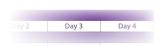
Instructor's Guide Quick Start


The BookShark™ Instructor's Guide (IG) is designed to make your educational experience as easy as possible. We have carefully organized the materials to help you and your children get the most out of the subjects covered. If you need help reading your schedule, see "How to Use the Schedule" in Section Four.

This IG includes a 36-week schedule, notes, assignments, readings, and other educational activities. For specific organizational tips, topics and skills addressed and other suggestions for the parent/teacher see **Section Three**. Here are some helpful features that you can expect from your IG.

Easy to use

Everything you need is located right after the schedule each week. If a note appears about a concept in a book, it's easy to find it right after the schedule based on the day the relevant reading is scheduled.

4-Day Schedule

Designed to save one day a week for music lessons, sports, field trips, co-ops, or other extra-curricular activities.

Notes

When relevant, you'll find notes about specific books to help you know why we've selected a particular resource and what we hope your children will learn from reading it. Keep an eye on these notes to also provide you with insights on more difficult concepts or content (look for "Note to Mom or Dad"). **Note:** What are the two kinds of poisonous lizards? The book only lists one – the Gila monster (*Heloderma suspec*tum) native to the southwestern United States. The other kind is known as a beaded lizard (Heloderma horridum) and is found in Mexico and Guatemala. [p. 35]

Instructor's Guide Resources and New User Information

Don't forget to familiarize yourself with some of the great helps in **Section Three** and **Section Four** so you'll know what's there and can turn to it when needed.

Activity Sheets and **Answer Keys**

Activity Sheets follow each week's notes and are customized for each lesson to emphasize important points in fun ways. They are designed with different skills and interests in mind. You may want to file them in a separate binder for your student's use. Corresponding Answer Keys have been included within your weekly Notes.

Date:	Day 1	Day 2	Day 3	Day 4	Day 5					
Super Simple Biology	pp. 10–11, 14–16	pp. 12–13, 17–19	pp. 20-23							
Activity Sheet Questions	#1-9 N	#10–14	#15–16							
Optional: Do Together	Ethical or Not									
BookShark Science G Experiments Book				#1 Are Yeast Alive?						
Supplies	Supplies We provide: 6SKB—COMING SOON You provide:									
Shopping/Planning List	For next week:									
		04l N -								

Other Notes

Special Note to Teachers

Day 1

Super Simple Biology | pp. 10–11, 14–16

Scientists use many variations of the scientific method as opposed to one fixed set of steps. The list of steps on pages 10-11 of the book offer one example of a scientific method. Please know these steps can vary slightly across science disciplines, and depend on the subject studied or purpose.

Why do scientists follow the scientific method? Have you ever followed a recipe to make your favorite dessert? Or to build a specific toy out of Lego®s? How do the instructions help? Instructions help us make the same thing each time. A recipe helps us make the delicious cookies we expect and ensure the toy we build looks like the one in the picture.

The scientific method is a defined process scientists use that functions somewhat like a recipe. It creates a process to help scientists conduct experiments systematically. It reminds them to state a clear question and identify specific variables they'd like to test. The process also helps them organize and record data, and to report their findings. Each step help them record exactly how the experiment went, which helps them learn from their own data, and identify problems, which can help them refine future attempts of the same experiment. Their clear reports also help other scientists understand and learn from the results, or be able to conduct the same experiment themselves. The scientific method helps scientists learn continually and work as a community to grow and further our scientific knowledge.

Activity Sheet Questions | #1–9

Activity Sheet Questions

Activity Sheets are included after each week of notes and are assigned on the corresponding schedule page. Each Activity Sheet has a corresponding Answer Key page following these note pages.

You do not have to do every question on the Activity Sheets. Feel free to adjust and/or omit questions to meet the needs of your students. We cover the same concepts repeatedly throughout the year (and years to come!) to enable students to learn "naturally" through repetition and practice over time.

We have provided a variety of activities to interest and challenge your students. Feel free to let your students do those activities that they enjoy and simply talk through others.

Remember: This program is designed for you to use to meet your students' needs. It is not meant to use you! **Suggestion:** Your Activity Sheets might work more easily in a small binder for your students to keep and use as assigned. If you have more than one student using this program, extra Activity Sheets can be purchased for each student.

Supplies

When supplies are listed as "We provide" they are included in your Science G Supplies Kit (65K). When supplies are listed as "You provide" they are materials you can generally find around your home. For example:

- aspirin
- liquid bleach
- curry powder
- baking soda

Shipping Restrictions

Due to strict import regulations, it is illegal to ship biological matter to certain countries (including New Zealand and Australia). If you requested your science supplies to be shipped to a country with such restrictions, we have removed that kit from your order and reduced your charge accordingly.

Optional: Do Together | Ethical or Not

Each week throughout Science G, we will provide ideas for fun activities to do with your students. In general, we will try to make the activities actually "active": performing additional research on a particular topic, watching a video, playing a game, getting outside, or some other type of "hands-on" activity that seeks to apply what your students have been learning in a meaningful way.

Take our ideas for what they are—mere suggestions and don't feel burdened by them. If your students don't want to do a particular activity or have a different, better idea, by all means ditch ours and go with theirs! Have fun!

Do you or your students think animal testing is ethical? Is there any instance you or your students would consider it ethical? Discuss the pros and cons of animal testing with your students. If you need additional pros or cons, do an online search.

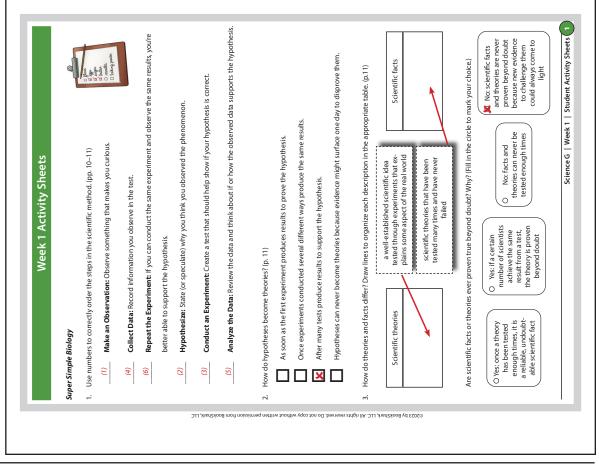
Day 2

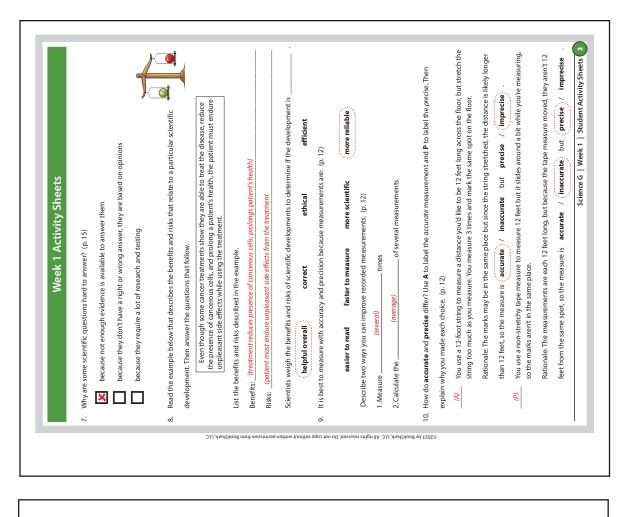
Super Simple Biology | pp. 12–13, 17–19

The book does not mention on p. 17 that a mode value only occurs when a value is repeated. If there is no repeated value, the data set will not have a mode.

Activity Sheet Questions | # 10–14

Day 3


Super Simple Biology | pp. 20-23


Robert Hooke's book in which he illustrated plant tissue was made using a technique called 'copperplate.' This was an early book-making technique that involved etching drawings into a thin sheet of copper, placing ink into the etching, and transferring the ink to paper. Hooke also included very detailed illustrations of a louse and a flea in the book. Your students can view some of the incredible drawings from the book online by searching for "Micrographia Robert Hooke." [p. 20]

Activity Sheet Questions | #15–16

Day 4

BookShark Science G Experiments Book | #1 Are Yeast Alive? ■

Show the way something is arranged

3-dimensionally

Simplified shapes or objects represent compley

ideas in the real world.

the data continues to change at the same rate. formula can help predict changes over time if

Representational

Spatial

Observed data entered into a mathematical

Draw lines to describe each type of scientific model. (p. 14)

5.

ask whether something is right or wrong, and can't be answered scientifically because they depend on people's opinions

Student Activity Sheets | Week 1 | Science G

ethical questions

can be tested

How do scientific and ethical questions differ? (p. 15)

omputational

scientific questions

Words or diagrams help describe something.

Computers use data to simulate complex

processes.

Mathematical

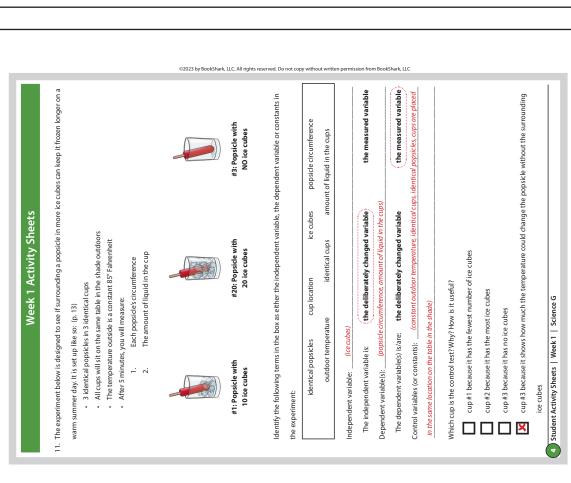
Descriptive

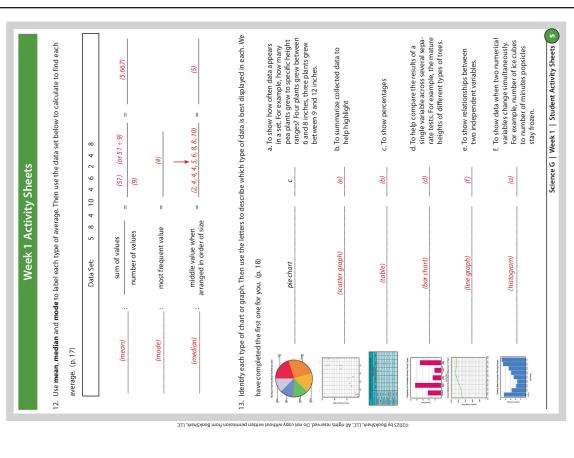
If you can make a model, you've proved the

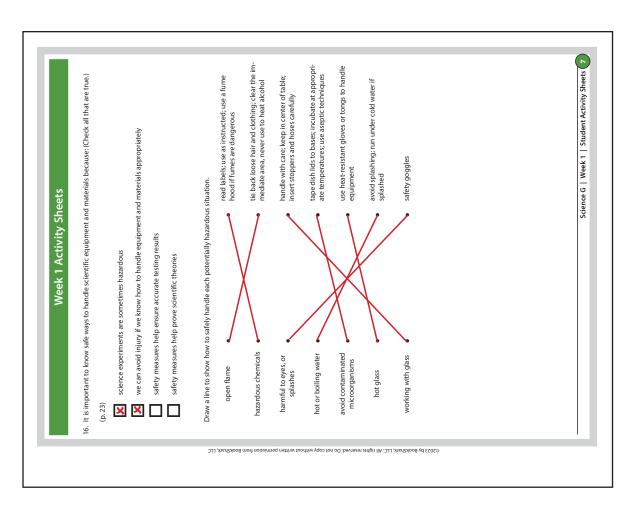
hypothesis is true

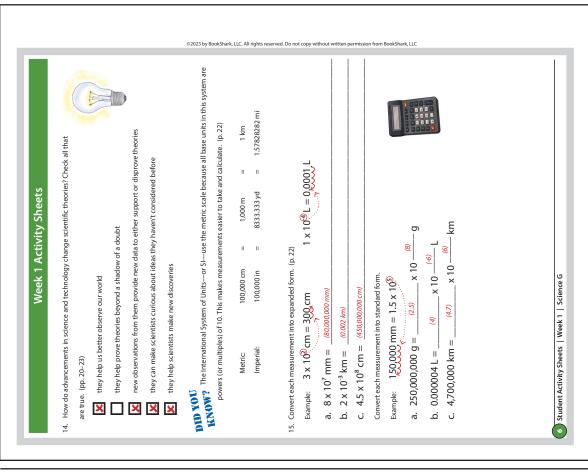
Models make science crafty and fun.

Why are scientific models helpful? Mark all that are true. (p. 14)


Models help scientists understand or describe


Models help scientists make predictions that


×


can be tested in experiments.

Week 1 Activity Sheets

Week 1 Activity Sheets

Super Simple Biology

1.	Use numbers to correctly order the steps in the scientific method. (pp. 10–11)									
	Make an Observation: Observe something that makes you curious.									
	Collect Data: Record information you observe in the test.									
	Repeat the Experiment: If you can conduct the same experiment and observe the same results, you're									
	better able to support the hypothesis.									
	Hypothesize: State (or speculate) why you think you observed the phenomenon.									
	Conduct an Experiment: Create a test that should help show if your hypothesis is correct.									
	Analyze the Data: Review the data and think about if or how the observed data supports the hypothesis.									
2.	How do hypotheses become theories? (p. 11)									
	As soon as the first experiment produces results to prove the hypothesis.									
	Once experiments conducted several different ways produce the same results.									
	After many tests produce results to support the hypothesis.									
	Hypotheses can never become theories because evidence might surface one day to disprove them.									
3.	How do theories and facts differ? Draw lines to organize each description in the appropriate table. (p.11)									
	a well-established scientific idea									
	Scientific theories tested through experiments that ex- plains some aspect of the real world									
	scientific theories that have been tested many times and have never									
	failed									
	Are scientific facts or theories ever proven true beyond doubt? Why? (Fill in the circle to mark your choice.)									
	O Yes: once a theory has been tested enough times, it is a reliable, undoubt- able scientific fact O Yes: if a certain number of scientists achieve the same result from a test, the theory is proven beyond doubt O No: facts and theories are never proven beyond doubt because new evidence to challenge them could always come to									

light

Week 1 Activity Sheets

4.	Why are scientific models helpful? Mark all that are true. (p. Models help scientists understand or describe	14)	Models make science crafty and fun.
	a scientific idea. Models help scientists make predictions that can be tested in experiments.		If you can make a model, you've proved the hypothesis is true.
5.	Draw lines to describe each type of scientific model. (p. 14)		Observed data entered into a mathematical
		•	formula can help predict changes over time if
	Representational		the data continues to change at the same rate.
		•	Simplified shapes or objects represent complex ideas in the real world.
	Spatial		
		•	Show the way something is arranged 3-dimensionally.
	Descriptive		
	Constitution has been been in the second of	•	Computers use data to simulate complex processes.
	Mathematical		
		•	Words or diagrams help describe something.
	Computational		
6.	How do scientific and ethical questions differ? (p. 15)		
	scientific questions •	•	can be tested
	ethical questions •	•	ask whether something is right or wrong, and can't be answered scientifically because they depend on people's opinions

Week 1 Activity Sheets

7. Why are some scientific questions hard to answer? (p. 15)

	because not enough evidend	ce is available to a	nswer them						
	because they don't have a rig	ght or wrong answ	ver, they are based on	opinions					
	because they require a lot of	research and test	ing						
8. Read the example below that describes the benefits and risks that relate to a particular scientific									
	development. Then answer the questions that follow.								
	Even though some cancer treatments show they are able to treat the disease, reduce the presence of cancerous cells, and prolong a patient's health, the patient must endure unpleasant side effects while using the treatment.								
	List the benefits and risks described in	n the example.							
	Benefits:								
	Risks:								
	Scientists weigh the benefits and risk	s of scientific deve	elonments to determin	e if the development is					
	helpful overall	correct	ethical	efficient	·				
9.									
١,	. Tels best to measure with accuracy ar	ia precision becau	ise measurements are	(p. 12)					
	easier to read fast	er to measure	more scientific	more reliable					
	easier to read fast Describe two ways you can improve			more reliable					
		recorded measure		more reliable					
	Describe two ways you can improve	recorded measure	ements. (p. 12)	more reliable					
	Describe two ways you can improve 1. Measure	recorded measure	ements. (p. 12)	more reliable					
10.	Describe two ways you can improve 1. Measure	recorded measure times of seve	ements. (p. 12) eral measurements.		nen				
10.	Describe two ways you can improve 1. Measure 2. Calculate the	recorded measure times of seve Use A to label the	ements. (p. 12) eral measurements.		nen				
10.	Describe two ways you can improve 1. Measure 2. Calculate the 0. How do accurate and precise differ? explain why you made each choice. (recorded measure times of seve Use A to label the (p. 12) measure a distance	ements. (p. 12) eral measurements. e accurate measureme	nt and P to label the <i>precise</i> . The et long across the floor, but st					
10.	Describe two ways you can improve 1. Measure 2. Calculate the 0. How do accurate and precise differ? explain why you made each choice. (You use a 12-foot string to r string too much as you mea	recorded measure times of seve Use A to label the (p. 12) measure a distance asure. You measure	ements. (p. 12) eral measurements. e accurate measureme e you'd like to be 12 fee e 3 times and mark the	nt and P to label the <i>precise</i> . The et long across the floor, but st	retch the				
10.	Describe two ways you can improve 1. Measure 2. Calculate the 0. How do accurate and precise differ? explain why you made each choice. (You use a 12-foot string to r string too much as you mea	recorded measure times of seve Use A to label the (p. 12) measure a distance asure. You measure e in the same place	ements. (p. 12) eral measurements. e accurate measureme e you'd like to be 12 fe e 3 times and mark the	nt and P to label the <i>precise</i> . The et long across the floor, but sto same spot on the floor.	retch the				
10.	Describe two ways you can improve 1. Measure 2. Calculate the 0. How do accurate and precise differ? explain why you made each choice. (You use a 12-foot string to r string too much as you mea Rationale: The marks may be than 12 feet, so the measure	recorded measure times of seve Use A to label the (p. 12) measure a distance asure. You measure e in the same place is accurate /	ements. (p. 12) eral measurements. e accurate measureme e you'd like to be 12 fee 3 times and mark the e but since the string inaccurate but	nt and P to label the <i>precise</i> . The et long across the floor, but st esame spot on the floor. stretched, the distance is likely	retch the				
10.	Describe two ways you can improve 1. Measure	recorded measure times of seve Use A to label the (p. 12) measure a distance asure. You measure e in the same place e is accurate / e measure to measure place.	eral measurements. e accurate measureme e you'd like to be 12 fee e 3 times and mark the e but since the string inaccurate but ure 12 feet but it slide	nt and P to label the <i>precise</i> . The tet long across the floor, but stressme spot on the floor. Stretched, the distance is likely precise / imprecise .	retch the , longer easuring,				

Week 1 Activity Sheets

- 11. The experiment below is designed to see if surrounding a popsicle in more ice cubes can keep it frozen longer on a warm summer day. It is set up like so: (p. 13)
 - 3 identical popsicles in 3 identical cups
 - All cups will sit on the same table in the shade outdoors
 - The temperature outside is a constant 85° Fahrenheit
 - After 5 minutes, you will measure:
 - 1. Each popsicle's circumference
 - 2. The amount of liquid in the cup

#1: Popsicle with 10 ice cubes

#20: Popsicle with 20 ice cubes

#3: Popsicle with NO ice cubes

Identify the following terms in the box as either the independent variable, the dependent variable or constants in the experiment:

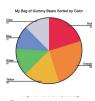
	identical popsicles	cup location	ice cubes	popsicle circumference						
	outdoor temperat	ure identica	al cups amo	ount of liquid in the cups						
Indepe	ndent variable:									
The i	ndependent variable is:	the deliberately ch	anged variable	the measured variable						
Depen	Dependent variable(s):									
The o	dependent variable(s) is/are:	the deliberately ch	anged variable	the measured variable						
Contro	l variables (or constants):									
Which	cup is the control test? Why? F	low is it useful?								
	cup #1 because it has the fev	vest number of ice cu	bes							
	cup #2 because it has the mo	ost ice cubes								
	cup #3 because it has no ice cubes									
	cup #3 because it shows hov	v much the temperatu	re could change th	ne popsicle without the surrounding						
	ice cubes									

Week 1 Activity Sheets

12. Use **mean**, **median** and **mode** to label each type of average. Then use the data set below to calculate to find each average. (p. 17)

Data Set:

5 8 4 10 4 6 2 4 8


sum of values

number of values

: most frequent value = _____

middle value when arranged in order of size

13. Identify each type of chart or graph. Then use the letters to describe which type of data is best displayed in each. We have completed the first one for you. (p. 18)

pie chart

____C

a. To show how often data appears in a set. For example, how many pea plants grew to specific height ranges? Four plants grew between 6 and 8 inches, three plants grew between 9 and 12 inches.

c. To show percentages

Popularity of Fundamer Gurreny Candy Types

To the Control Market Country Inch Control Market Country Inch Co

d. To help compare the results of a single variable across several separate tests. For example, the mature heights of different types of trees.

e. To show relationships between two independent variables.

f. To show data when two numerical variables change simultaneously. For example, number of ice cubes to number of minutes popsicles stay frozen.

Week 1 Activity Sheets

14. How do advancements in science and technology change scientific theories? Check all that

are true. (pp. 20–23)

they help us better observe our world

they help prove theories beyond a shadow of a doubt

they can make scientists curious about ideas they haven't considered before

they help scientists make new discoveries

The International System of Units—or SI—use the metric scale because all base units in this system are

powers (or multiples) of 10. This makes measurements easier to take and calculate. (p. 22)

Metric: 100,000 cm = 1,000 m = 1 km

Imperial: 100,000 in = 8333.333 yd = 1.57828282 mi

15. Convert each measurement into expanded form. (p. 22)

Example: $3 \times 10^{2} \text{ cm} = 300 \text{ cm}$

$$1 \times 10^{-4} L = 0.0001 L$$

a. $8 \times 10^7 \, \text{mm} =$

b.
$$2 \times 10^{-3} \text{ km} =$$

c. $4.5 \times 10^8 \text{ cm} =$

Convert each measurement into standard form.

Example:

$$150,000 \text{ mm} = 1.5 \times 10^{5}$$

a. 250,000,000 g = ____ x 10 ---- g

c. 4,700,000 km = ____ x 10 ----- km

Week 1 Activity Sheets

6. It is important to know safe ways to handle scientific equipment and materials because: (Check all that are true.)									
(p. 23)									
science experin	science experiments are sometimes hazardous								
we can avoid in	we can avoid injury if we know how to handle equipment and materials appropriately								
safety measure	s help ensure accurate testing results								
safety measure:	s help prove scientific theories								
Draw a line to show how	v to safely handle each potentially haza	rdous	situation.						
open flame	•	•	read labels; use as instructed; use a fume hood if fumes are dangerous						
hazardous chemicals	•	•	tie back loose hair and clothing; clear the immediate area, never use to heat alcohol						
harmful to eyes, or splashes	•	•	handle with care; keep in center of table; insert stoppers and hoses carefully						
hot or boiling water	•	•	tape dish lids to bases; incubate at appropriate temperatures; use aseptic techniques						
avoid contaminated microorganisms	•	•	use heat-resistant gloves or tongs to handle equipment						
hot glass	•	•	avoid splashing; run under cold water if splashed						
working with glass	•	•	safety goggles						

Date:	Day 1	Day 2	Day 3	Day 4	Day 5				
Super Simple Biology	pp. 25–27		pp. 28–31						
The Usborne Complete Book of the Human Body		pp. 7–11							
Activity Sheet Questions	#1-8	#9–14	#15–21						
Handheld Microscope Activities	Kingdom Close-Ups		Inspect Invertebrates						
Optional: Do Together		Listen to Your Students							
BookShark Science G Experiments Book				#2 What are Living Things Made Of?					
Supplies	We provide: 6SKB—COMING SOON You provide:								
Shopping/Planning List	For next week:								

Other Notes

Day 1

Super Simple Biology pp. 25–27

Scientists disagree on a single set of characteristics shared by all living things. Most scientists agree that all living organisms are made of cells, and that living things all maintain homeostasis, or internal order, which the book does not mention. It is important to note that science is constantly evolving as scientists learn more and modify previous thoughts and ideas.

Activity Sheet Questions | #1–8

Handheld Microscope Activities | Kingdom Close-

This year, you will see a new view of science; from the microscopic level! We provide several hands-on activities for you to use a handheld microscope to investigate what everyday items look like up-close. If you did not purchase the handheld microscope from BookShark, search our website at www.bookshark.com for sku ES08. Some activities may be completed with more powerful microscopes and slides, if you have them.

Today you learned about classifying organisms into different kingdoms. It is likely that you have a few different kingdoms in your refrigerator right now! Let's use your microscope to explore real-life examples of what you learned today. Search for samples of Kingdom Plantae (fruits and vegetables), Fungi (mushrooms), and Animalia (any type of meat) in your refrigerator. You can even include yogurt, which is made by mixing milk and certain kinds of bacteria in Kingdom Protocista. Next, find a plain, white plate or a glass casserole dish. Use a sharp knife to cut thin samples of each food item you found, or smear a small drop onto the plate. Now, get comfortable with your handheld microscope. Turn the microscope light on and point the lit tip at your first sample. Look through the lens with one eye, and adjust the focus dial back and forth until you see your sample clearly. While looking into your microscope, move it up, down, left, and right. Note that the image goes in the opposite direction of your movement. This is because the lens flips the image as it goes into your eye.

Move on to your other samples. Describe the textures or other details that you see. When you are done exploring the kingdoms with your microscope, note that the clear tip of your microscope can slide on and off, so if it got messy today, remove the clear tip and rinse with soap and water. Let dry before reattaching.

Day 2

The Usborne Complete Book of the Human Body pp. 7-11

The picture of red blood cells on p. 8 was made with a scanning electron microscope, which your students learned about last week. These microscopes create a 3-D image, and the specimen does not need to be thinly sliced as is required with a traditional microscope.

Activity Sheet Questions | #9-14

Day 3

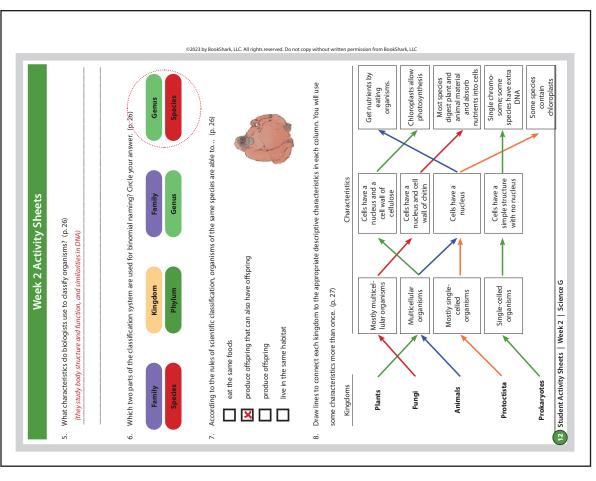
Super Simple Biology | pp. 28–31

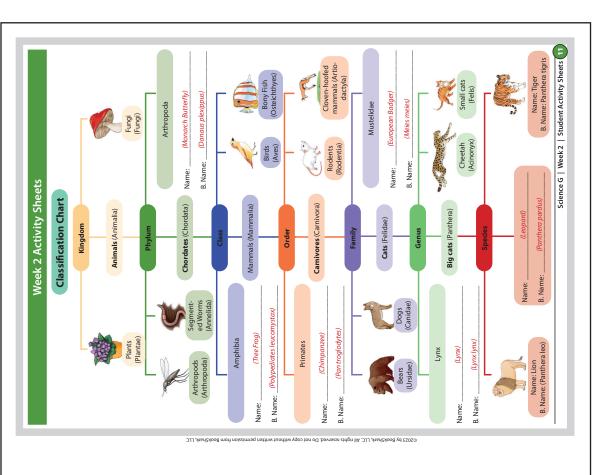
The book mentions that most cells in the human body are specialized for a particular function. However, stem cells can develop into many different types of cells. Our bone marrow contains a type of stem cell that can develop into many types of blood cells, including red blood cells, white blood cells, or platelets. These adult stem cells can be harvested from bone marrow, that has been donated, and used in the treatment of some diseases, including certain types of cancer. [p. 28]

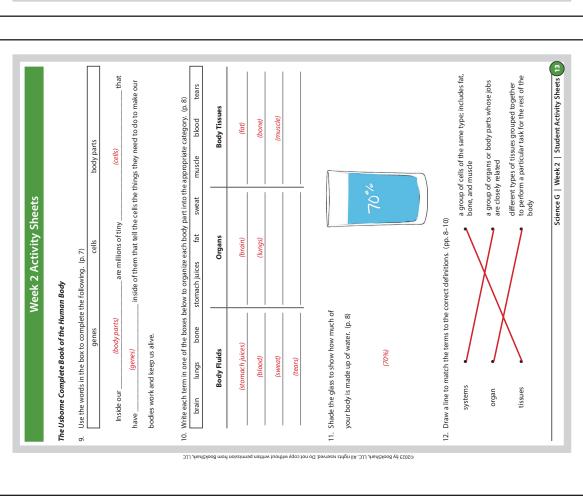
The kingdom Animalia includes over 30 phyla, and only one phylum is composed of vertebrates. The book only mentions one phylum of invertebrates, arthropods, but other common invertebrates include members of the phylum Porifera (sponges), Cnidaria (jellies, anemones, corals), and Mollusca (clams, octopus, etc), not to mention all the many groups of worms. [p. 31]

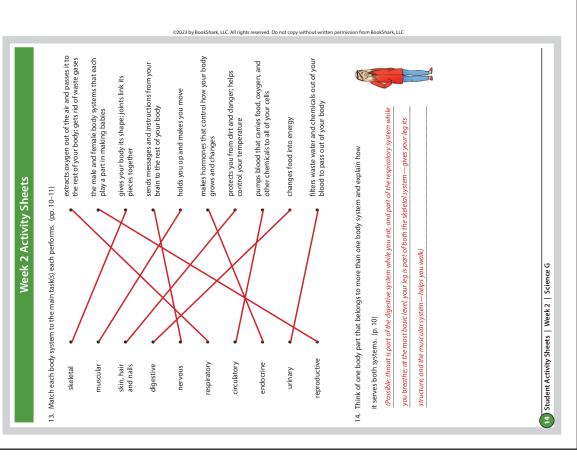
Activity Sheet Questions | #15–21

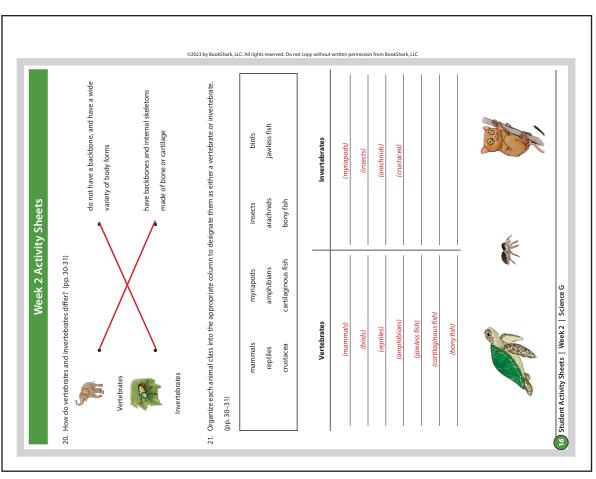
Handheld Microscope Activities | Inspect Invertebrates

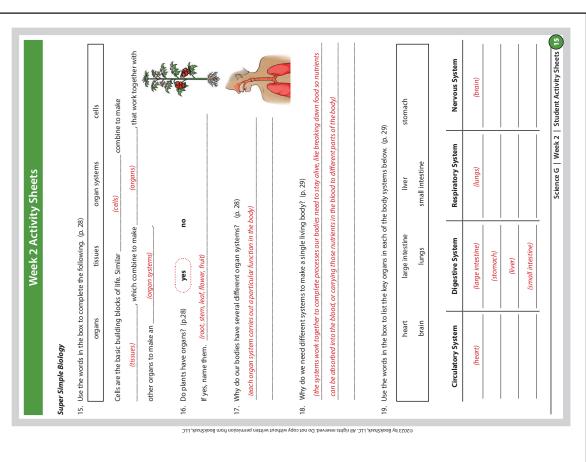

Invertebrates come in all shapes and sizes and far outnumber us. There are probably 200 million insects for every person alive on the Earth! To use your microscope today, search your windowsills for a dead insect. Collect with tweezers and place on a blank white paper. Now, discover what your insect looks like up close.


Day 4


BookShark Science G Experiments Book | #2 What are Living Things Made Of? ■


Week 2 Activity Sheets	en kev characteristics of life. (n. 25)	growth nutrition movement	sensing excretion	: increase size permanently	: ability to take in information about surroundings and respond to	the information : eliminate waste	produce offspring	: maneuver some or all parts of their body, even if simply by growing	: obtain or make food	: break down substances to release energy to enable cell processes
>	Super Simple Biology 1. Use the words in the box to label the eeven key characteristics of life. (n. 25)	reproduction	respiration	(growth)	(sensing)	(excretion)	(reproduction)	(movement)	(untrition)	(respiration)


"Arthropoda", review the table and find the animal that lists "Arthropoda" in the Phylum column. To add an animal to the Classification Chart, list the animal's common name ("Name") and its binomial name ("B. Name"). Be sure to work page. Use the information in the table below to help you place the animals where they belong in the chart. So, for Plexippus Each animal in the table below represents a new classification of animals missing from the Chart on the following in order: Kingdom, Phylum, Class, etc. Remember, each new level in the chart more clearly defines each organism, Species Lynx **Polypediates** (no, they cannot carry out any life processes on their own, and only reproduce by invading other cells) Danaus Lynx Pan Rhacophoridae Nymphalidae Hominidae Felidae Family Felidae Week 2 Activity Sheets which makes organisms lower on the chart more closely related. (p. 26) Lepidoptera Carnivora Carnivora Primates Carnivora Anura malia Mammalia Insecta Amphibia Mammalia Do viruses carry out life processes? Explain. (p. 25) Class 10 Student Activity Sheets | Week 2 | Science G (some do and some don't—they disagree) Arthropoda Chordata Chordata Chordata Chordata Chordata Phylum Do scientists think they're alive? Animalia Animalia Animalia Animalia Animalia



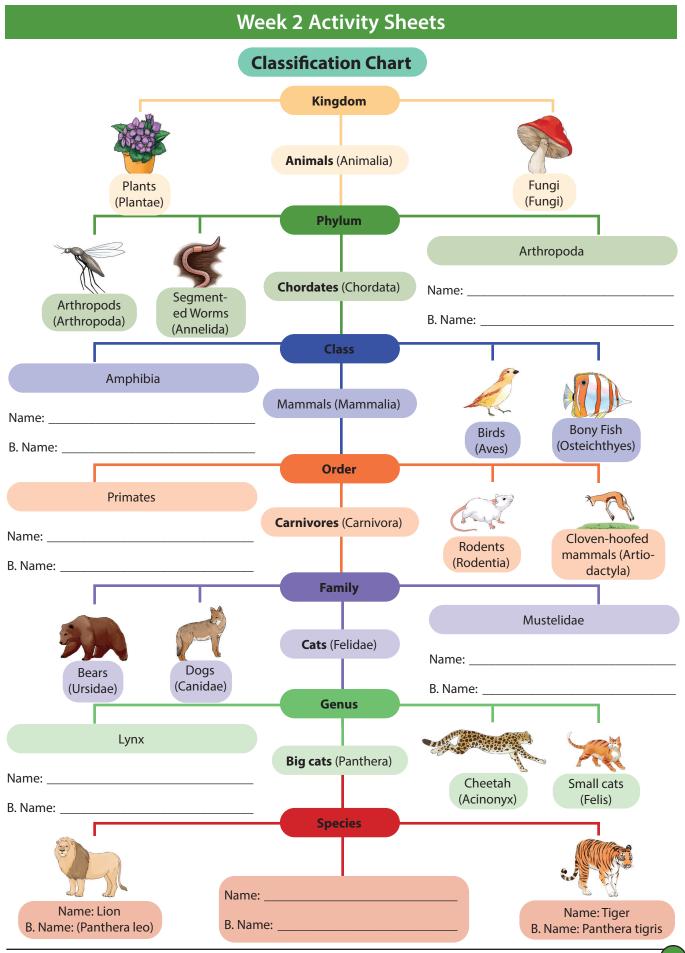
2.

Week 2 Activity Sheets

Super Simple Biology

1. Use the words in the box to label the seven key characteristics of life. (p. 25)

	reproduction	growth	nutrition	movement	
	respiration	sensing	excretion		
		the infor : eliminate : produce : maneuve : obtain o : break do	take in information about mation waste offspring er some or all parts of the rake food own substances to release	eir body, even if simply by gr	rowing
Cat: aliv	ve no	naracteristics to explain	and support your answe	r. (p. 25)	
Oak Tree: Explain:	alive	not alive			
Robot dog: Explain:		not alive			


Week 2 Activity Sheets

3.	Do viruses carry out life processes? Explain. (p. 25)

Each animal in the table below represents a new classification of animals missing from the Chart on the following page. Use the information in the table below to help you place the animals where they belong in the chart. So, for "Arthropoda", review the table and find the animal that lists "Arthropoda" in the Phylum column. To add an animal to the Classification Chart, list the animal's common name ("Name") and its binomial name ("B. Name"). Be sure to work in order: Kingdom, Phylum, Class, etc. Remember, each new level in the chart more clearly defines each organism, which makes organisms lower on the chart more closely related. (p. 26)

Common Name	Kingdom	Phylum	Class	Order	Family	Genus	Species
Leopard	Animalia	Chordata	Mammalia	Carnivora	Felidae	Panthera	Pardus
Lynx	Animalia	Chordata	Mammalia	Carnivora	Felidae	Lynx	Lynx
Monarch Butterfly	Animalia	Arthropoda	Insecta	Lepidoptera	Nymphalidae	Danaus	Plexippus
European Badger	Animalia	Chordata	Mammalia	Carnivora	Mustelidae	Meies	Meies
Tree Frog	Animalia	Chordata	Amphibia	Anura	Rhacophoridae	Polypediates	Leucomystax
Chimpanzee	Animalia	Chordata	Mammalia	Primates	Hominidae	Pan	Troglodytes

Do scientists think they're alive?

Some species

contain chloroplasts

Week 2 Activity Sheets What characteristics do biologists use to classify organisms? (p. 26) Which two parts of the classification system are used for binomial naming? Circle your answer. (p. 26) **Family Kingdom Family** Genus Genus **Species** Phylum **Species** According to the rules of scientific classification, organisms of the same species are able to... (p. 26) eat the same foods produce offspring that can also have offspring produce offspring live in the same habitat Draw lines to connect each kingdom to the appropriate descriptive characteristics in each column. You will use some characteristics more than once. (p. 27) Kingdoms Characteristics Cells have a Get nutrients by Mostly multicelnucleus and a **Plants** eating cell wall of **lular** organisms organisms. cellulose Cells have a Multicellular Chloroplasts allow **Fungi** nucleus and cell organisms photosynthesis wall of chitin Most species Mostly singledigest plant and Cells have a **Animals** celled animal material nucleus organisms and absorb nutrients into cells Single chromo-Cells have a Single-celled some; some **Protoctista** simple structure organisms species have extra with no nucleus DNA

Prokaryotes

Week 2 Activity Sheets

The Usborne Complete Book of the Human Body

Use the words in the box to complete the following. (p. 7)

genes

body parts

Inside our _____ are millions of tiny _____

have ______ inside of them that tell the cells the things they need to do to make our

bodies work and keep us alive.

10. Write each term in one of the boxes below to organize each body part into the appropriate category. (p. 8)

brain lungs bone stomach juices	fat	sweat	muscle	blood	tears
---------------------------------	-----	-------	--------	-------	-------

Body Fluids	Organs	Body Tissues

11. Shade the glass to show how much of your body is made up of water. (p. 8)

- 12. Draw a line to match the terms to the correct definitions. (pp. 8–10)
 - systems

a group of cells of the same type; includes fat, bone, and muscle

- organ

- tissues

- a group of organs or body parts whose jobs are closely related
 - different types of tissues grouped together
- to perform a particular task for the rest of the body

Week 2 Activity Sheets

- 13. Match each body system to the main task(s) each performs. (pp. 10–11)
 - skeletal

 muscular

 skin, hair
 and nails
 - digestive •

nervous

respiratory

- circulatory •
- endocrine •
- urinary •
- reproductive •

- extracts oxygen out of the air and passes it to the rest of your body; gets rid of waste gases
- the male and female body systems that each play a part in making babies
- gives your body its shape; joints link its pieces together
- sends messages and instructions from your brain to the rest of your body
- holds you up and makes you move
- makes hormones that control how your body grows and changes
- protects you from dirt and danger; helps control your temperature
- pumps blood that carries food, oxygen, and other chemicals to all of your cells
- changes food into energy
- filters waste water and chemicals out of your blood to pass out of your body
- 14. Think of one body part that belongs to more than one body system and explain how

it serves both systems. (p. 10)

Week 2 Activity Sheets

Super Simple Biology

15.	Use the words in the box to cor	mplete the following. (p	o. 28)	
	organs	tissues	organ systems	cells
	Cells are the basic building bloo	cks of life. Similar		_ combine to make
		, which combine to mak	ке	, that work together with
	other organs to make an			
16.	Do plants have organs? (p.28)	yes	no	
	If yes, name them.			
17.	Why do our bodies have severa	l different organ system	is? (p. 28)	
10				
18.	Why do we need different syste	ems to make a single liv	ing body? (p. 29)	
19.	Use the words in the box to list	the key organs in each	of the body systems bel	ow. (p. 29)
	heart	large intestine	liver	stomach
	brain	lungs	small intestine	

Circulatory System	Digestive System	Respiratory System	Nervous System

Week 2 Activity Sheets

20. How do vertebrates and invertebrates differ? (pp. 30-31)

do not have a backbone, and have a wide variety of body forms

made of bone or cartilage

Vertebrates

- have backbones and internal skeletons
- Invertebrates
- 21. Organize each animal class into the appropriate column to designate them as either a vertebrate or invertebrate. (pp. 30-31)

mammals	myriapods	insects	birds	
reptiles	amphibians	arachnids	jawless fish	
crustacea	cartilaginous fish	bony fish		

Vertebrates	Invertebrates

Date:	Day 1	Day 2	Day 3	Day 4	Day 5
The Usborne Complete Book of the Human Body	pp. 12–13				
All in a Drop		pp. 8–23	pp. 24–45		
Activity Sheet Questions	#1–3	#4-8	#9–16		
Handheld Microscope Activities		Fantastic Fabrics	Antony's Antics, Part I		
Optional: Do Together		Convex or Concave			
BookShark Science G Experiments Book				#3 What is the Dif- ference Between Living and Nonliv- ing Things?	
Supplies	We provide: 6SKB You provide:	—COMING SOON			
Shopping/Planning List	For next week:				
		0.1			

Other Notes

Special Note to Teachers

Day 1

The Usborne Complete Book of the Human Body pp. 12-13

Identical Twins and DNA

Do identical twins have identical DNA?

As a matter of fact, they do. Identical twins form when one fertilized egg splits, which means both babies will have the same set of 46 chromosomes. Fraternal twins, on the other hand, form from two eggs that are fertilized separately and therefore usually only share about 50% of their DNA. This explains why fraternal twins often look more like siblings rather than an identical copy of one another.

Even though identical twins share the same DNA, or genotype, they have different phenotypes, which are traits you can observe that result from the way DNA is expressed in slightly different ways. Have you ever noticed that once you get to know two identical twins, it's not too difficult to tell them apart? They may have slightly different temperaments, or something about their faces, or the way they prefer to dress that sets them apart. Since some of these phenotypes include physical appearance and fingerprints, this means that even though a DNA test can't tell identical twins apart, fingerprints can.

Activity Sheet Questions | #1–3

Day 2

All in a Drop | pp. 8–23

Leeuwenhoek was indeed an unlikely player in the world of science. Most of the important early scientists were highly educated and well-connected, and he was neither. He serves as a shining example of the importance of hard work, curiosity, and persistence.

Why would children drink beer? In Antony van Leeuwenhoek's day, germs and bacteria had not yet been discovered, but people did recognize that drinking water often made them sick. Instead they drank brewed beverages like tea, beer, cider, wine and ale. To brew beer, a brewer first boils water which kills all of the germs and bacteria it contains and makes it safe to drink. The first brewing contains alcohol. The same ingredients were used again to boil a second and third batch, like using the same tea bag to brew more cups. The beer produced by the third batch has almost not alchohol in it and was called small beer, and this beer the children would drink. [p. 13]

Activity Sheet Questions | #4–8

Handheld Microscope Activities | Fantastic Fabrics

Antony van Leeuwenhoek discovered many details with his microscope. Over the next few weeks, we will pick out a few items Leeuwenhoek investigated and ask you to look at them with your handheld microscope, too. Today, since Leeuwenhoek sold fine fabrics, you should look at different kinds of cloth in your home. Compare a warm shirt to a cool shirt. Jeans to khaki pants. Blankets to carpet. Soft to scratchy. Note the sizes of threads and how they weave together. Can you figure out what makes cloth warm, soft, sturdy, etc?

Optional: Do Together | Convex or Concave

Are your students familiar with the concept of concave/ convex? If you have a magnifying glass, allow them to feel the shape of the lens. Is it concave (curves inward) or convex (bulges outward)? Why? If you or a family member have a pair of eyeglasses, allow them to feel the shape of the lenses in the glasses. Are they concave or convex? Discuss the reasoning for the curvature. For example, reading glasses will be convex in shape because they are acting like a magnifying glass to make close things appear larger. Eyeglasses used for distance will have a concave shape, although this curvature may be more difficult to feel depending on the prescription.

Day 3

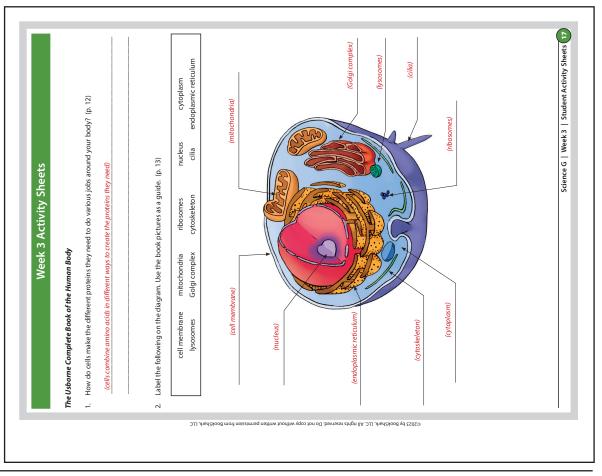
All in a Drop | pp. 24-45

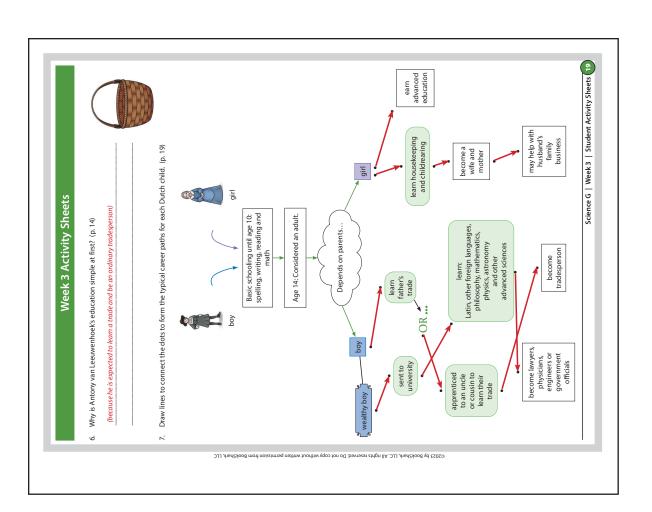
The book mentions the oldest scientific journal, Philosophical Transactions. This journal published the first scientific writings of Isaac Newton in 1672, in which he theorized that white light is actually composed of seven distinct colors. This writing launched his scientific career.

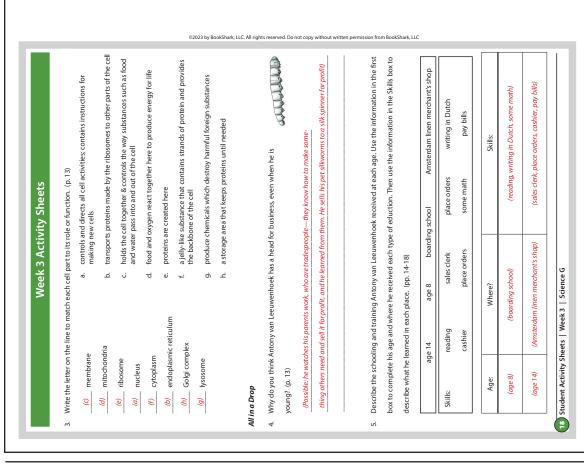
Another notable scientist, Benjamin Franklin, was published in Philosophical Transactions. Franklin had 19 of his papers published in the journal, including his findings on the connection between lightning and electricity. He founded the American Philosophical Society, which he modeled on the Royal Society. [p. 34]

Leeuwenhoek has been called the "Father of Microbiology" because of his ground-breaking discoveries with his microscopes. 'Micro' comes from the Greek word for small and 'Biology' is the study of life. Therefore, microbiology is the study of small life. Leeuwenhoek's inventive microscopes allowed him to see, for the first time, the small life that is all around us. [p. 39]

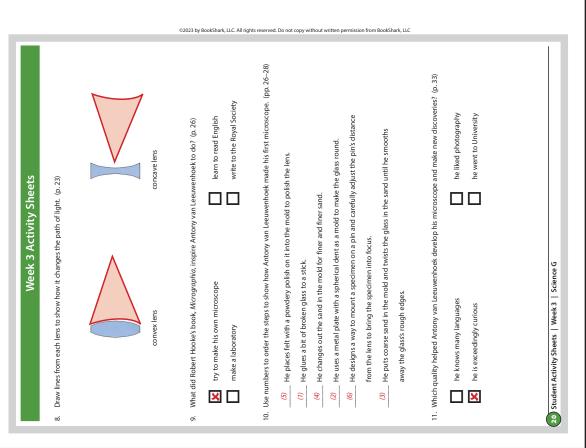
Activity Sheet Questions | #9–16


Handheld Microscope Activities | Antony's Antics, Part I

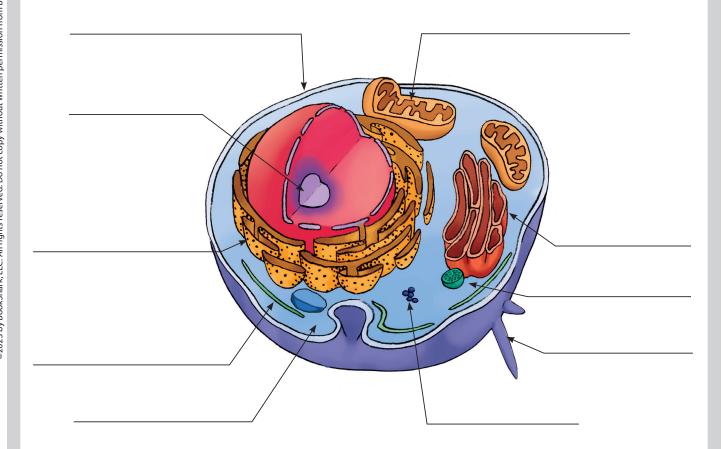

Here are several of Leeuwenhoek's items you can view with your handheld microscope:


- chalk (whole and smashed)
- coffee (whole bean and ground)
- various spices you have on hand.

Day 4


BookShark Science G Experiments Book | #3 What is the Difference Between Living and Nonliving Things? ■

	I made new discoveries with his	nsactions which informs the rest o			his	ducts his experiments in his	for the Royal Society to believe		uip-		44) est micros cope to view the		heck all that are true. (p. 45)	he used only a single lens	he used larger, bowl-shaped lenses		nt of distortion, which makes an		
Week 3 Activity Sheets	nced the Royal Society that he'd	ientific journal Philosophical Tran	ım from them)	37)	s of his findings, since photograp	: makes his microscopes or conc	t. Why does this make it harder	14)	and they do not have the right equ		indings? How does he do it? (p.	J)	owerful than Robert Hooke's? C	be used c	he used la	in a microscope? (p. 45)	n but they also increase the amou		
Week 3 A	12. Why was it important that van Leeuwenhoek convinced the Royal Society that he'd made new discoveries with his	microscope? (pp. 32–34) (because they began to publish his findings in the scientific journal Philosophical Transactions which informs the rest of	the scientific community about them so they can leam from them)	13. Why did van Leeuwenhoek hire an artist? (pp. 36–37)	(so he could include detailed images with the reports of his findings, since photographs hadn't been invented yet)	Antony van Leeuwenhoek does not explain how he makes his microscopes or conducts his experiments in his	reports—he keeps his microscope design top secret. Why does this make it harder for the Royal Society to believe	he's found tiny animals in water samples? (pp. 43–44)	(since the Royal Society cannot replicate his results and they do not have the right equip	ment, they don't readily believe him)	Who is finally able to support van Leeuwenhoek's findings? How does he do it? (p. 44) (Robert Hooke—he soaks whole peppercorts in rainwater for 10 days, then uses his best microscope to view the	water in the smallest, thinnest glass tube he can find)	Why were van Leeuwenhoek's microscopes more powerful than Robert Hooke's? Check all that are true. (p. 4.5)	he stacked multiple lenses together	he used small, spherical lenses	16. Why is it less effective to use larger, stacked lenses in a microscope? (p. 45)	(multiple lenses increase the power of magnification but they also increase the amount of distortion, which makes an	image less clear and sharp)	
	12			13	r2µ94¢ FFC	loo8 mon noizi	imnəq n	ethirw fuo	thiw yqq	d. Do not co	əvrəsər zahgir IIA	. Рачк, LLC.	2023 by BookS	9		16			



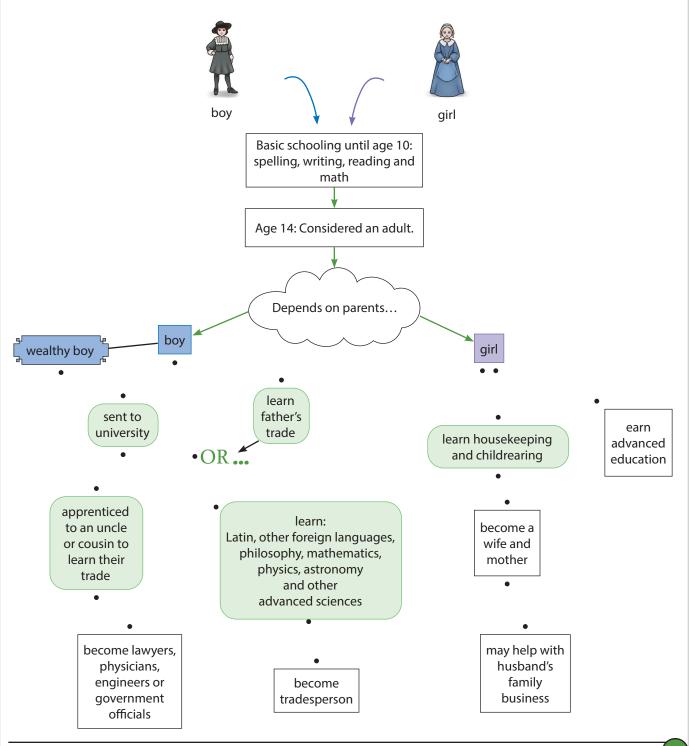
Week 3 Activity Sheets

The Usborne Complete Book of the Human Body

- 1. How do cells make the different proteins they need to do various jobs around your body? (p. 12)
- 2. Label the following on the diagram. Use the book pictures as a guide. (p. 13)

cell membrane	mitochondria	ribosomes	nucleus	cytoplasm
lysosomes	Golgi complex	cytoskeleton	cilia	endoplasmic reticulum

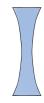
Week 3 Activity Sheets


3.	Write the letter on	the line to match each	cell p	art to its ro	le or function. (բ	o. 13)				
	membrane	2	a.	controls a making n		activities	s; contai	ins instructions for		
	mitochono	dria	b.	transports	s to other parts of the cell					
	ribosome				he cell together & controls the way substances such as food					
	nucleus		٦		pass into and ou			adusa apargu far lifa		
	cytoplasm		d.			ether her	e to pro	oduce energy for life		
	endoplasr	nic reticulum	e.		re created here					
	Golgi com	plex	f.		substance that one of the cell	contains s	strands (of protein and provide	S	
	lysosome		g.	produce o	hemicals which o	destroy h	armful f	foreign substances		
			h.	a storage	area that keeps p	oroteins u	ıntil nee	eded		
5.	4. Why do you think Antony van Leeuwenhoek has a head for business, even when he is young? (p. 13)									
	·	earned in each place.(or eduction. The	in use the	HIIOHH	nation in the Skills box t	ιο	
	ag	e 14 age 8	3	boardir	ıg school	Amste	rdam lir	nen merchant's shop		
	Skills:	reading	sales	clerk	place orde	ers	writin	ng in Dutch		
		cashier	olace	orders	some mat	h	p	ay bills		
	Age:	Where	Where?				Skills:			

Week 3 Activity Sheets

Why is Antony van Leeuwenhoek's education simple at first? (p. 14)

Draw lines to connect the dots to form the typical career paths for each Dutch child. (p. 19)



Week 3 Activity Sheets

Draw lines from each lens to show how it changes the path of light. (p. 23)

convex lens

concave lens

9.	What d	id Robert Hooke's book, <i>Micrographia</i> , inspire Antony van Leeuv	venhoek to do? (p. 26)
	R	try to make his own microscope make a laboratory	learn to read English write to the Royal Society
10.	Use nur	mbers to order the steps to show how Antony van Leeuwenhoe	k made his first microscope. (pp. 26–28)
		He places felt with a powdery polish on it into the mold to poli	sh the lens.
		He glues a bit of broken glass to a stick.	
		He changes out the sand in the mold for finer and finer sand.	
		He uses a metal plate with a spherical dent as a mold to make	the glass round.
		He designs a way to mount a specimen on a pin and carefully a	adjust the pin's distance
		from the lens to bring the specimen into focus.	
		He puts coarse sand in the mold and twists the glass in the san	nd until he smooths
		away the glass's rough edges.	

11. Which quality helped Antony van Leeuwenhoek develop his microscope and make new discoveries? (p. 33)

he knows many languages
he is exceedingly curious

he liked photography

he went to University

Week 3 Activity Sheets 12. Why was it important that van Leeuwenhoek convinced the Royal Society that he'd made new discoveries with his microscope? (pp. 32–34) 13. Why did van Leeuwenhoek hire an artist? (pp. 36–37) 14. Antony van Leeuwenhoek does not explain how he makes his microscopes or conducts his experiments in his reports—he keeps his microscope design top secret. Why does this make it harder for the Royal Society to believe he's found tiny animals in water samples? (pp. 43–44) Who is finally able to support van Leeuwenhoek's findings? How does he do it? (p. 44) 15. Why were van Leeuwenhoek's microscopes more powerful than Robert Hooke's? Check all that are true. (p. 45) he stacked multiple lenses together he used only a single lens he used small, spherical lenses he used larger, bowl-shaped lenses 16. Why is it less effective to use larger, stacked lenses in a microscope? (p. 45)

Science G—Weekly Subject List

Week	Subject
1	scientific method; measurements; scientific units
2	characteristics of life; body systems; vertebrates; invertebrates
3	cells; organelles; Antony van Leeuwenhoek biography
4	animal and plant cells; single-celled organisms; Antony van Leeuwenhoek biography
5	diffusion; osmosis; active transport; Antony van Leeuwenhoek biography
6	enzymes; pH; metabolism; glucose
7	enzymes; digestive system; lactase
8	excretory system; insulin; diabetes; kidneys; nutrients
9	energy in food; BMI; endocrine system; adrenaline; cellular respiration
10	anaerobic and aerobic respiration; breathing
11	lungs; exercise; heart; respiration
12	circulatory system; blood vessels; blood; heart rate; heart disease; lymphatic system
13	skeletal system; joints; muscles; tendons; involuntary muscles; reflexes
14	brain; how brains work; response to stimuli; nervous system; neurons; synapses
15	sexual and asexual reproduction; growth and development; mitosis; cell division
16	meiosis; reproductive systems; conception; pregnancy; puberty; hormones
17	menstruation; fertility; genes; DNA; Human Genome project; alleles
18	genetic transcription; translation; genetic crosses; codominance; blood groups
19	nervous system damage; eyesight; trouble with eyesight; temperature control
20	five senses; genetic mutations; inherited disorders; sex determination; sex-linked traits
21	stem cells; selective breeding; cloning; genetic engineering
22	plants; pollination; fruid; seeds; germination; continuous and discontinuous evolution
23	life cycles; natural selection; fossils; speciation
24	health; disease; immune system; medicine
25	skin; hair; nails; pathogens
26	viral diseases; body barriers; immunity; vaccination; antibodies
27	cancer; antibiotics; surgery; complementary medicine
28	ecology; abiotic and biotic factors; plant hormones; photosynthesis; leaves; stomata; glucose
29	pests; plant defences; rate of photosynthesis
30	inverse square law; greenhouse farming; plant nutrients; water, carbon, nitrogen cycles; transpiration
31	plant roots; food webs; decomposers; composting
32	carrying capacity; environmental issues: wetlands; caribou migration
33	predator-prey interactions; social behavior; energy transfers; biomass; environmental issues: coal mining, gas factory
34	population growth; biodiversity; climate change; environmental issues: solar panels; e-trash
35	carbon sinks; invasive species; pollution; environmental issues: water pollution, upcycling
36	conservation; food production; farmind methods; environmental issues: factory pollution